Additional Peer-Reviewed Publications

  • Besenmatter, W., P. Kast & D. Hilvert. 2004. New enzymes from combinatorial library modules. Methods Enzymol. 388: 91-102.
  • Gaille, C., P. Kast & D. Haas. 2002. Salicylate biosynthesis in Pseudomonas aeruginosa.  Purification and characterization of PchB, a novel bifunctional enzyme displaying isochorismate pyruvate lyase and chorismate mutase activities. J. Biol. Chem. 277: 21768-21775.
  • Taylor, S. V., K. U. Walter, P. Kast & D. Hilvert. 2001. Searching sequence space for protein catalysts. Proc. Natl. Acad. Sci. USA 98: 10596-10601.
  • Taylor, S. V., P. Kast & D. Hilvert. 2001. Genetische Selektion – eine Strategie zur Untersuchung und Herstellung von Enzymen. Angew. Chem. 113: 3408-3436.
  • Taylor, S. V., P. Kast & D. Hilvert. 2001. Investigating and engineering enzymes by genetic selection. Angew. Chem. Int. Ed. 40: 3310-3335.
  • Sharma, N., R. Furter, P. Kast & D. A. Tirrell. 2000. Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. 467: 37-40.
  • Kast, P., C. Grisostomi, I. A. Chen, S. Li, U. Krengel, Y. Xue & D. Hilvert. 2000. A strategically positioned cation is crucial for efficient catalysis by chorismate mutase. J. Biol. Chem. 275: 36832-36838.
  • Gamper, M., D. Hilvert & P. Kast. 2000. Probing the role of the C-terminus of Bacillus subtilis chorismate mutase by a novel random protein-termination strategy. Biochemistry 39: 14087-14094.
  • Mattei, P., P. Kast & D. Hilvert. 1999. Bacillus subtilis chorismate mutase is partially diffusion-controlled. Eur. J. Biochem. 261: 25-32.
  • Gustin, D. J., P. Mattei, P. Kast, O. Wiest, L. Lee, W. W. Cleland & D. Hilvert. 1999. Heavy atom isotope effects reveal a highly polarized transition state for chorismate mutase. J. Am. Chem. Soc. 121: 1756-1757.
  • MacBeath, G., P. Kast & D. Hilvert. 1998. A small, thermostable, and monofunctional chorismate mutase from the archaeon Methanococcus jannaschii. Biochemistry 37: 10062-10073.
  • MacBeath, G., P. Kast & D. Hilvert. 1998. Probing enzyme quaternary structure by combinatorial mutagenesis and selection. Prot. Sci. 7: 1757-1767.
  • MacBeath, G., P. Kast & D. Hilvert. 1998. Redesigning enzyme topology by directed evolution. Science 279: 1958-1961.
  • MacBeath, G., P. Kast & D. Hilvert. 1998. Exploring sequence constraints on an interhelical turn using in vivo selection for catalytic activity. Prot. Sci. 7: 325-335.
  • MacBeath, G. & P. Kast. 1998. UGA read-through artifacts — when popular gene expression systems need a pATCH. Biotechniques 24: 789-794.
  • Kast, P., Y. B. Tewari, O. Wiest, D. Hilvert, K. N. Houk & R. N. Goldberg. 1997. Thermodynamics of the conversion of chorismate to prephenate:  Experimental results and theoretical predictions. J. Phys. Chem. B 101: 10976-10982.
  • Kast, P. & D. Hilvert. 1997. 3D structural information as a guide to protein engineering using genetic selection. Curr. Opin. Struct. Biol. 7: 470-479.
  • Grisostomi, C., P. Kast, R. Pulido, J. Huynh & D. Hilvert. 1997. Efficient in vivo synthesis and rapid purification of chorismic acid using an engineered Escherichia coli strain. Bioorg. Chem. 25: 297-305.
  • Kast, P. & D. Hilvert. 1996. Genetic selection strategies for generating and characterizing catalysts. Pure Appl. Chem. 68: 2017-2024.
  • Kast, P., J. D. Hartgerink, M. Asif-Ullah & D. Hilvert. 1996. Electrostatic catalysis of the Claisen rearrangement: probing the role of Glu78 in Bacillus subtilis chorismate mutase by genetic selection. J. Am. Chem. Soc. 118: 3069-3070.
  • Kast, P., M. Asif-Ullah, N. Jiang & D. Hilvert. 1996. Exploring the active site of chorismate mutase by combinatorial mutagenesis and selection: the importance of electrostatic catalysis. Proc. Natl. Acad. Sci. USA 93: 5043-5048.
  • Kast, P., M. Asif-Ullah & D. Hilvert. 1996. Is chorismate mutase a prototypic entropy trap?  –  Activation parameters for the Bacillus subtilis enzyme. Tetrahedron Lett. 37: 2691-2694.
  • Kast, P. 1994. pKSS — A second-generation general purpose cloning vector for efficient positive selection of recombinant clones. Gene 138: 109-114.
  • Ibba, M., P. Kast & H. Hennecke. 1994. Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry 33: 7107-7112.
  • Keller, B., P. Kast & H. Hennecke. 1992. Cloning and sequence analysis of the phenylalanyl-tRNA synthetase genes (pheST) from Thermus thermophilus. FEBS Lett. 301: 83-88. -- Erratum 1992:  FEBS Lett. 310:204.
  • Kast, P., B. Keller & H. Hennecke. 1992. Identification of the pheS5 mutation, which causes thermosensitivity of Escherichia coli mutant NP37. J. Bacteriol. 174: 1686-1689.
  • Kast, P., C. Wehrli & H. Hennecke. 1991. Impaired affinity for phenylalanine in Escherichia coli phenylalanyl-tRNA synthetase mutant caused by Gly-to-Asp exchange in motif 2 of class II tRNA synthetases. FEBS Lett. 293: 160-163.
  • Kast, P. & H. Hennecke. 1991. Amino acid substrate specificity of Escherichia coli phenylalanyl-tRNA synthetase altered by distinct mutations. J. Mol. Biol. 222: 99-124.
  • Spielmann-Ryser, J., M. Moser, P. Kast & H. Weber. 1991. Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli. Mol. Gen. Genet. 226: 441-448.
JavaScript has been disabled in your browser